Selecting Power Supplies, Encoders and Drives

Chapter Objectives	In this chapter we discuss how to select the hardware you need to support an IMC 110 system. We discuss:
	 selecting a power supply for the backplane selecting a power supply for the user-side using fast inputs and fast outputs selecting an encoder selecting a drive
· · · · · · · · · · · · · · · · · · ·	The amount of hardware you need depends on how many axes your application uses. Consult your local Allen-Bradley sales engineer or distributor to help you select the equipment for your application.
Selecting a Power Supply for the Backplane	Before you select a power supply you must calculate the current requirements for your backplane. Table 1.A lists the backplane current requirements for the control module.
	Table 1.A

Voltage	Current Requirement	
+ 5	.300 A	
+24V	.104 A (when using handheld pendant)	

In your calculations you must include the current requirements of the I/O modules in your chassis. Refer to your SLC 500 documentation.

Example of Calculations for Backplane Current Requirements

Our example system includes:

- one 7-slot modular rack
- one 1747-L511 CPU module
- one 1746-IB8 dc input module with 8 inputs @ +24 V
- one 1746-OV8 dc output module with 8 outputs @ +24 V
- one 1747-PIC interface module
- an IMC 110 system which includes:
 - 2 control modules
 - 2 termination panels
 - 2 Allen-Bradley 845H encoders
 - 6 fast inputs
 - 2 fast outputs

Table 1.B lists the current requirements of the devices that use backplane power. Those devices that are not included in the backplane calculations are included in the user-side example calculations.

Table 1.B

Current Requirements for the Backplane of the Example System

Device	+5V	+ 24V	
1747-L511	.350 A	.104 A (when using handheld pendant)	
control module	.300 A	.104 A (when using interface module)	
control module	.300 A	0	
1746-IB8	.040 A	0	
1746-OV8	.125 A	0	
	Total +5V	Total +24V	
	1.115 A	.208 A	

Given the current requirements of this system, you can use the power supply included in the fixed-style SLC 500, the 1746-P1 or the 1746-P2 to power the backplane. Table 1.C lists the power supplies Allen-Bradley recommends for the backplane.

Chapter 1 Selecting Power Supplies, Encoders, and Drives

Table 1.C

Recommended Power Supplies for Backplane Current Requirements

Power Supply	Output Capacity	AC Line Input Capacity	
included with the fixed-style SLC 500 chassis	5V dc @ 2A; 24V @ .2A	85-130, 170-265 V ac or 19.2-28.8 V dc	
1746-P1	5V dc @ 2A; 24V @ .2 A	85-130, 170-265 V ac	
1746-P2	5V dc @ 5A; 24V @ .2 A	85-130, 170-265 V ac	
1746-P3	5V dc @ 3.6A; 24V @ .2 A	19.2-28.8 V dc	

Selecting a Power Supply for the User-Side

You must provide a power supply that will meet the user-side requirements of your system. These devices require user-side power:

- the control module
- encoders
- I/O modules
- E-stop circuitry
- fast inputs and fast outputs

The power supply you select must meet the specifications of a NEC Class 2 power supply. The power supply must have +5V, $\pm 15V$ capacity, and +24V capacity for E-stop circuitry and fast I/O. We recommend that you **do not** use the +24V included with the 1770-P1, P2, or P3 to power your E-stop and/or fast I/O.

Before you select a power supply, you must calculate the user-side current requirements for the system.

Example of Calculations for User-Side Current Requirements

Our example system includes:

- one 7-slot modular rack
- one 1747-L511 CPU module
- one 1746-IB8 dc input module with 8 inputs @ +24 V
- one 1746-OV8 dc output module with 8 outputs @ +24 V
- an IMC 110 system which includes:
 - 2 control modules
 - 2 termination panels
 - 2 Allen-Bradley 845H encoders
 - 6 fast inputs
 - 2 fast outputs